环境微生物研究室基于微生物学原理解决环境污染问题,主要涉及:环境污染微生物修复及资源化技术;环境微生物与微纳米材料相互作用;污染环境微生物生态机理;环境生物制剂研发与应用。研究室现有教师5人,共培养博士和硕士50余人。近5年来,承担国家自然科学基金项目、国家高技术研究发展计划(863)子课题、国家重大专项等10余项,承担多项企业委托的污染治理项目,发表SCI收录论文200余篇,授权专利30余件。
The Group of Environmental Microorganism solves problems of environmental pollution based on theories of environmental microbiology. The research of this group mainly focuses on microbial remediation and resoucelization, interactions between environmental microorganism and micro-/nano-materials,mechanisms of microbial ecology in polluted environment, and development and application of environmental reagents. Currently, there are five faculties in the group. Over 50 PhD and master students have graduated from the group. During the past 5 years, the group has undertaken more than 10 research projects including those of National Science Foundation, sub-topics of National High Technology Research and Development Program and National Science and Technology Major Project. The group also cooperated in several projects with enterprises. Over 200 SCI-index papers have been published and more than 30 patents have been licensed.
代表性成果
—— 新兴污染物微生物降解机理
以提高生物降解效率和了解污染物环境归趋为目的,分析新兴污染物对环境微生物生态的影响,探寻污染物生物降解的新机制,调控污染物降解路径。
——微生物与微纳米材料作用机理
以揭示天然及人工微纳米材料与微生物的相互作用为目的,探究微生物如何参与材料在环境中转化和归趋,解析材料对生物降解过程和微生物生态的影响机制。
——介体物质氧化还原活性及其强化污染物生物转化
探究腐殖酸及碳基材料等介体的氧化还原活性;以提高胞外电子传递为核心,研发新型介体材料,探寻其催化强化污染物生物降解机理,建立生物强化处理体系调控策略。
代表论文
1.Han, Y.; Wang, J.; Zhao, Z.; et al. Fishmeal application induces antibiotic resistance gene propagation in mariculture sediment. Environ. Sci. Technol. 2017, 51, 10850−10860.
2.Gu, C.; Wang, J.; Liu, S.; et al. Biogenic fenton-like reaction involvement in cometabolic degradation of tetrabromobisphenol A by Pseudomonas sp. fz. Environ. Sci. Technol. 2016, 50, 9981−9989.
3.Qu, Y.; Ma, Q.; Deng, J.; et al. Responses of microbial communities to single-walled carbon nanotubes in phenol wastewater treatment systems. Environ. Sci. Technol. 2015, 49, 4627−4635.
4.Dong, B.; Liu, G.; Zhou, J.; et al. Effects of reduced graphene oxide on humic acid-mediated transformation and environmental risks of silver ions. J. Hazard. Mater. 2020, 121597.
5.Dong, B.; Liu, G.; Zhou, J.; et al. Transformation of silver ions to silver nanoparticles mediated by humic acid under dark conditions at ambient temperature. J. Hazard. Mater. 2020, 383, 121190.
6.Zhou, Y; Lu, H.; Wang, J.; et al. Catalytic performance of quinone and graphene-modified polyurethane foam on the decolorization of azo dye Acid Red 18 by Shewanella sp. RQs-106. J. Hazard. Mater. 2018, 356, 82−92.
7.Shen, W.; Qu, Y.; Pei, X.; et al. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au. J. Hazard. Mater. 2017, 321, 299−306.
8.Lu, H., Wang, X., Zang, M., et al. Degradation pathways and kinetics of anthraquinone compounds along with nitrate removal by a newly isolated Rhodococcus pyridinivorans GF3 under aerobic conditions. Bioresour. Technol., 2019, 285, 121336.
9.Liu, L.; Liu, G.; Zhou, J.; et al. Cotransport of biochar and Shewanella oneidensis MR-1 in saturated porous media: Impacts of electrostatic interaction, extracellular electron transfer and microbial taxis. Sci. Total Environ. 2019, 658, 95−104.
10.Zhang, Y.; Ma, J.; Shi, L.; et al. Joint toxicity of cadmium and SDBS on Daphnia magna and Danio rerio. Ecotoxicology. 2016, 25, 1703−1711.
11.Zhang, Y.; Sun, Q.; Zhou, J.; et al. Reduction in toxicity of wastewater from three wastewater treatment plants to alga (Scenedesmus obliquus) in northeast China. Ecotox. Environ. Safe. 2015, 119, 132−139.