当前位置: 首页   >   科学研究   >   科研团队   >   正文

环境催化与材料研究室

作者:    信息来源:    发布时间: 2021-03-18

环境催化与材料研究室,现有教授1人、副教授1人、讲师1人. 本研究室涉及的研究方向包括环境催化材料与绿色催化、环境污染控制化学、大气污染控制技术、原位谱学表征技术等。近年来,承担国家重点基础研究计划(973)课题、国家高技术研究发展计划(863)课题、国家重大研发计划、国家自然科学基金项目(NSFC)、国家自然科学基金国际合作项目(NSFC-RGC)、教育部高等学校博士学科点专项科研基金等课题20余项,在Environ. Sci. Technol., J. Catal., Adv. Funct. Mater., J. Phys. Chem. 等国内外高水平期刊上发表学术论文200余篇。同时,研究室同国际知名研究机构(University of Georgia, University of California at River Side, USA; Univ of Calgary, Canada; Univ of Queenslands, Monash University, UWA, UNSW, Curtin University, Australia; HKUST, CityU, Hong Kong等)保持着密切的学术交流与合作关系。

主要研究方向:(1) 环境催化与绿色催化:工业废水、废气等污染物的绿色催化转化及控制原理与技术;(2) 环境材料:研究新型环境材料的制备,原位表征及其在环境与能源中的应用原理;(3) 环境表面-界面化学:利用原位谱学技术研究典型污染物的多尺度表面–界面的化学物理行为;(4) 纳米化学与能源催化:研究纳米催化及新型环境可持续能源的制备、存储及转化的原理和技术。

Our laboratory has been conducting research in the field of environmental catalysis & materials, and developing green techniques for pollution control and renewable energy harvest. There are currently one professor, two associate professor and two lecturers in this group. In recent years, the group has committed more than ten national projects, including projects funded by National Natural Foundation of China, National High-tech R&D Program (863 program), National Basic Research Program of China (973 program), Specialized Research Fund for the Doctoral Program of Higher Education of China and Young Thousand Talents Program. We have published over 100 academic papers in peer-reviewed journals, such as Environ. Sci. Technol., J. Catal., Adv. Funct. Mater., and J. Phys. Chem.

The main research interests here include:

(1) Environmental catalysis and green catalysis, specifically, the principles and techniques on green catalytic conversion and control of various industrial wastewater and gaseous pollutants.

(2) Novel materials for environmental and energetic application, including the fabrication, in situ characterization and application principles of advanced materials for environment and energy resource.

(3) Environmental chemistry at surfaces and interfaces, i.e., investigations on the chemical and physical behaviors of typical pollutants on multiple scales of surfaces and interfaces with the aid of multiple in-situ spectroscopies.

(4) Nanochemistry and sustainable energy techniques, including nanocatalysis, and its principles and technology on the production, storage and conversion of renewable fuels applicable in environment.

代表性成果

——新型环境催化材料的设计制备与催化特性

制备多种半导体化合物的一维纳米管或纳米棒异质结、纳米棒,高度取向纳米管阵列结构薄膜材料,通过精细调变材料结构基元的微观结构、定向合成方式构筑高度分散且具有特定晶面取向、量子限域特征的半导体体系,通过从原子水平上调控半导体的晶面取向,可以控制光生电子-空穴复合的几率及提高光催化光电化学反应的效率。


——污染物降解过程中的原位波谱技术的研究

创新性地结合原位红外技术与表面光伏等瞬态谱学技术,揭示中间体物种与光致电荷表面-界面迁移动力学;利用原位在线红外结合质谱技术解析光催化机理等重要信息。





——工业气态污染物的污染控制技术

针对各种不同工业气态污染物的排放特点,利用各种催化技术对其进行催化消除,开发各种不同构造和功能的催化剂,实现污染物的零排放。







代表论文

1.Fan, S.Y.; Li, X.Y.; Tan, J.; Zeng, L.B.; Yin, Z.F.; Tadé, M.; Liu, S. M. Ru-Pd BQDs anchored Titania NAEs composites with double Schottky junctions: First-principles evidence and experimental verifications. Applied Catalysis B-Environmental 2018, 227, 499−511.

2.Mu, J.C.; Li, X.Y.; Sun, W.B.; Fan, S.Y.; Wang, X.Y.; Wang, L.; Qin, M.C.; Gan, G.Q.; Yin, Z.F.; Zhang, D.K. Inductive Effect Boosting Catalytic Performance of Advanced Fe1–xVxOδ Catalysts in Low-Temperature NH3 Selective Catalytic Reduction: Insight into the Structure, Interaction, and Mechanisms. ACS Catalysis 2018, 8 (8), 6760−6774.

3. Sun, J.J.; Li, X.Y.; Zhao, Q. D.; Tadé, M.; Liu, S. M. Construction of p-n Heterojunction β-Bi2O3/BiVO4 Nanocomposite with Improved Photoinduced Charge Transfer Property and Enhanced Activity in Degradation of ortho-Dichlorobenzene. Applied Catalysis B-Environmental 2017, 219, 259−268.

4. Liu, B. J.; Li, X. Y.; Zhao, Q. D.; Ke J.; Tadé, M.; Liu, S. M. Preparation of AgInS2/TiO2 Composites for Enhanced Photocatalytic Degradation of Gaseous o-Dichlorobenzene under Visible Light. Applied Catalysis B-Environmental 2016, 185, 1–10.

5. Liu, J.; Zhao, Q. D.; Li, X. Y.; Chen, J. H.; Zhang, D. K. Structure Sensitivity of Selective Catalytic Reduction of NO with Propylene over Cu-Doped Ti0.5Zr0.5O2-delta Catalysts. Applied Catalysis B-Environmental 2015, 165, 519−528.

6. Yuan, D. L.; Li, X. Y.; Zhao, Q. D.; Zhao, J. J.; Tadé, M.; Liu, S. M. A Novel CuTi-Containing Catalyst Derived from Hydrotalcite-Like Compounds for Selective Catalytic Reduction of NO with C3H6 under Lean-Burn Conditions. Journal of Catalysis 2014, 309, 268−279.

7. Liu, J.; Li, X. Y.; Zhao, Q. D.; Hao, C.; Wang, S. B.; Tadé, M. Combined Spectroscopic and Theoretical Approach to Sulfur-Poisoning on Cu-Supported Ti-Zr Mixed Oxide Catalyst in the Selective Catalytic Reduction of NOx. ACS Catalysis 2014, 4 (8), 2426−2436.

8. Liu, J.; Li, X. Y.; Zhao, Q. D.; Hao, C.; Zhang, D. K. Insight into the Mechanism of Selective Catalytic Reduction of NOx by Propene over the Cu/Ti0.7Zr0.3O2 Catalyst by Fourier Transform Infrared Spectroscopy and Density Functional Theory Calculations. Environmental Science & Technology 2013, 47 (9), 4528−4535.

9. Hou, Y.; Li, X. Y.; Zhao, Q. D.; Chen, G. H.; Raston, C. L. Role of Hydroxyl Radicals and Mechanism of Escherichia coli Inactivation on Ag/AgBr/TiO2 Nanotube Array Electrode under Visible Light Irradiation. Environmental Science & Technology 2012, 46 (7), 4042−4050.

10.Zhao, L.; Li, X. Y.; Quan, X.; Chen, G. H. Effects of Surface Features on Sulfur Dioxide Adsorption on Calcined NiAl Hydrotalcite-like Compounds. Environmental Science & Technology 2011, 45 (12), 5373−5379.


 

 Copyright© 2019All Rights Reserved. 大连理工大学环境学院版权所有  辽ICP备15000288 号